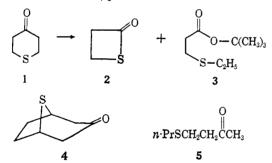
Sir:

The ultraviolet spectra of β -keto sulfides, ¹⁻³ the cyclic γ -keto sulfide thiacyclohexan-4-one¹⁻³ (1), and the cyclic δ -keto sulfide thiacyclooctan-5-one^{4,5} show evidence for charge transfer in the excited state as well as perturbation of the n, π^* state of the carbonyl group.

Similar studies of the photolysis⁶ of 8-thiabicyclo-[3.2.1]octan-3-one^{14,15} (4) in a variety of solvents yielded the products indicated in Table I.

The ultraviolet spectrum of the acyclic γ -keto sulfide 5 shows no charge-transfer band.^{16,17} Photolysis of 5 in Freon-113 with a Pyrex, Corex, or Vycor filter yields only polymeric material; photolysis in *t*-butyl alcohol yields predominately polymeric material plus

Solvent			~~~~~~% yield*				
	Time, hr	Concn, % (g/ml)	0 5 5	VS OR 12	S H	S OH	Unreacted 4
t-Butyl alcohol	39	0.20	49 (84)	(0)	(6)	(1)	6 (9)
t-Butyl alcohol	95	1.20	43 (67)	$0.5(3)^{c}$	15	2	36 (33)
Methanol	62.3	0.20	(2)	(4) ^{d.e}	(42)	(6)	(45)
Cyclohexane	74	0.20	(0)		15	4	70 ົ໌
Freon-113	15.3	0.40	32			0	50


Table I. Yields of Products from Photolysis of 4

^a The numbers not in parentheses are isolated yields determined by column chromatography on 80–100 mesh silicic acid followed by dis-tillation or sublimation; the yields in parentheses are determined by gas chromatography as described in ref 9. ^b v_{max}^{CHC1a} 1782 (s), 1637 (w),

1000 (m), 910 (m) cm⁻¹; nmr (CCl₄): § 1.7-2.6 (multiplet, 4 H, -CH₂CH₂-), 3.2-4.4 (multiplet, 3 H, -CH-CH₂-CO-S), 4.8-5.2 (multiplet, 2 H, =CH₂), 5.4-6.3 (multiplet, 1 H, -CH=). $^{\circ}R = C(CH_3)_3$. $^{\circ}R = CH_3$. $^{\circ}$ Structure not established; structure based on retention time on gas chromatography. / R. E. Ireland and N. H. Smith, Chem. Ind. (London), 1252 (1959).

We have undertaken a study of the photochemistry of these systems and related systems to investigate possible synthetic applications of these reactions. This communication reports the results of our initial studies with γ -keto sulfides.

Photolysis⁶ of $1^{7,8}$ as a 0.21% (w/v) solution in tbutyl alcohol for 26.4 hr yielded 46.5 % β -thiolactone 2^{10,11}, 49% ester 3,^{12,13} and 5%⁹ unreacted 1. Photolysis of 16 as a 0.29% solution in Freon-113 for 48.2

hr produced 2 in 51 % yield.9

- E. A. Fehnel and M. Carmack, J. Am. Chem. Soc., 71, 84 (1949).
 G. Bergson and A-L. Delin, Arkiv Kemi, 18, 489 (1961).
- (3) G. Bergson, G. Claeson, and L. Schotte, Acta Chem. Scand., 16, 1159 (1962).
- (4) N. J. Leonard, T. L. Brown, and T. W. Milligan, J. Am. Chem. Soc., 81, 504 (1959).
- (5) N. J. Leonard, T. W. Milligan, and T. L. Brown, ibid., 82, 4075 (1960).

(6) Hanova Type L 450-w lamp with Pyrex filter. (7) $\lambda_{\max}^{\text{Freon-113}} 230 \text{ m}\mu (\epsilon 640), 291 \text{ m}\mu (\epsilon 21); \quad \lambda_{\max}^{\text{(CH3)sCOH}} 237 \text{ m}\mu (\epsilon 435),$ 287 mµ (ε 22).

(8) C. Barkenbuss, V. C. Midkiff, and R. M. Newman, J. Org. Chem., 16, 232 (1951).

(9) Not isolated yield; the mixture was analyzed by gas chromatography on a 6-ft column of 10% Carbowax on Chromosorb P at 140°. Samples were collected on a 2.5-ft column at 110° for spectra and combustion analysis or comparison with an authentic sample.

(10) British Patent 840,658 (1960); Chem. Abstr., **55**, 1452 (1961). (11) ν_{\max}^{CHCls} 1776 cm⁻¹; nmr (CCl₄): δ 3.05 and 4.02 ppm, triplets, J = 6.5 cps.

(12) Satisfactory analyses have been obtained for all new compounds reported.

(13) The isolated yield of 3 was 36%; isolated by column chromatography on 80-100 mesh silicic acid followed by distillation.

at least six other products, formed in a total yield of less than 5%.

Since the charge-transfer bands for 1 and 4 extend beyond 280 m μ and overlap with the n, π^* band, our results do not enable us to conclude whether charge transfer or n, π^* excitation is responsible for the observed products.18

(14) $\lambda_{\max}^{\text{Preon-113}}$ 232 m μ (ϵ 570), 294 m μ (ϵ 20); $\lambda_{\max}^{(CH_3)_3COH}$ 238 m μ (ϵ 399), 287 m μ (ϵ 21).

(15) V. Horak, J. Zavada, and A. Pishala, Acta Chim. Hung., 21, 97 (1959).

(16) $\lambda_{\max}^{\text{Freon-113}}$ 283 m μ (ϵ 28); $\lambda_{\max}^{(\text{CH}_3)$ 3COH 280 m μ (ϵ 34).

(17) Similar results are reported for other acyclic γ -keto sulfides; see ref 1-3.

(18) This research has been supported by National Science Foundation Grant No. GP-5761.

(19) Alfred P. Sloan Fellow, 1963-1967.

Peter Y. Johnson, Glenn A. Berchtold¹⁹

Department of Chemistry, Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received February 27, 1967

Photochemistry of Isothiochroman-4-one

Sir:

We wish to report an interesting photochemical rearrangement of the isothiochroman-4-one system.

Photolysis¹ of $1^{2,3}$ in cyclohexane (0.20% w/v) for 6-7 hr produced in 20% yield a liquid isomer identified as thiochroman-3-one (3) by analysis,⁴ spectral data,⁵ and the synthesis of an authentic sample by Dieckmann cyclization of 4 followed by acid hydrolysis and decar-

 Hanovia Type L 450-w lamp with Pyrex filter.
 C. C. Price, M. Hori, T. Parasaran, and M. Polk, J. Am. Chem. Soc., 85, 2278 (1963); J. von Braun and K. Weissbach, Ber., 62, 2416 (1929); P. Cagniant and D. Cagniant, Bull. Soc. Chim. France, 2225 (1961). (3) $\lambda_{\max}^{\text{isoctane}}$ 244.5 m μ (ϵ 10,400), 289 (1540), 348 (149).

(4) Satisfactory analyses have been obtained on all new compounds reported.

(5) ν_{max} (5) γ_{max} (ε 6900), 357 (150); nmr: δ 3.15 (2 H, singlet, -SCH₂-CO-), 3.55 (2 H, singlet, ArCH2CO-), 6.9-7.8 (4 H, multiplet, ArH).